Practical product sampling for single scattering in media: supplemental document

Keven Villeneuve ${ }^{\star, 1,2}$ Adrien Gruson ${ }^{\star}, 1 \quad$ Iliyan Georgiev ${ }^{3}$ Derek Nowrouzezahrai ${ }^{1}$
${ }^{*}$ equal contribution ${ }^{1}$ McGill University, Canada ${ }^{2}$ SEED - Electronic Arts, Canada ${ }^{3}$ Autodesk, United Kingdom

1. Introduction

In this supplemental document we provide technical details on our polynomial-expansion-based scheme for importance sampling single scattering from a point source along a ray. We utilize a parameterization where θ is the angle subtended at the point source by the scattering location along the ray (see paper Fig. 1). An order-6 Taylor expansion for a function $f(\theta)$ around $\theta=0$ has the form

$$
\begin{equation*}
\mathcal{T}_{f}(\theta)=\sum_{n=0}^{6} \frac{f^{(n)}(0)}{n!} \theta^{n}=\sum_{n=0}^{6} Q_{f, n} \theta^{n} \tag{1}
\end{equation*}
$$

The main purpose of this document is to provide the values of the polynomial coefficients $Q_{f, n}$ for $f \in\{T, \rho\}$, i.e. for importance sampling transmittance (Section 2) and phase function (Section 3). In Section 4, we discuss the sampling of the product of such an expansion and our analytical sampling of the point source's cosine foreshortening term (paper Section 3.1).

Knowing the above polynomial coefficients, one can normalize $\mathcal{T}_{f}(\theta)$ to a PDF with a corresponding CDF, respectively

$$
\begin{equation*}
p_{f}(\theta)=\frac{\mathcal{T}_{f}(\theta)}{C_{f}\left(\theta_{\min }, \theta_{\max }\right)}, \quad P_{f}(\theta)=\frac{C_{f}\left(\theta_{\min }, \theta\right)}{C_{f}\left(\theta_{\min }, \theta_{\max }\right)} \tag{2}
\end{equation*}
$$

The normalization factor $C_{f}(a, b)=\int_{a}^{b} \mathcal{T}_{f}(\theta) \mathrm{d} \theta$ is also a polynomial with coefficients obtained by straightforwardly integrating each summand in Eq. (1). The resulting CDF P_{f} is not analytically invertible, but numerical root finding works particularly well for this type of function (see paper Section 3.2).

2. Taylor expansion of transmittance

In homogeneous media, we can evaluate the transmittance over the entire (two-segment) path as a function of θ (see paper Section 3):

$$
\begin{equation*}
T(\theta)=e^{-\mu_{\mathrm{t}}\left(h(\tan \theta+\sec \theta)+t_{h}\right)}=e^{-\mu_{\mathrm{t}} h(\tan \theta+\sec \theta)} e^{-\mu_{\mathrm{t}} t_{h}} \tag{3}
\end{equation*}
$$

where h is the (perpendicular) distance between the point source and the ray, and t_{h} is the distance from the ray origin and the point source's projection onto the ray (see paper Fig. 1). Applying the order-6 Taylor expansion from Eq. (1) with $f \equiv T$ yields the fol-
lowing polynomial coefficients:

$$
\begin{align*}
Q_{T, 0} & =e^{-\mu_{t}(D+\Delta)} \tag{4}\\
Q_{T, 1} & =-u_{1} \tag{5}\\
Q_{T, 2} & =\frac{1}{2}\left(Q_{T, 1}+u_{2}\right), \tag{6}\\
Q_{T, 3} & =\frac{1}{6}\left(2 Q_{T, 1}+3 u_{2}-u_{3}\right), \tag{7}\\
Q_{T, 4} & =\frac{1}{24}\left(5 Q_{T, 1}+11 u_{2}-6 u_{3}+u_{4}\right), \tag{8}\\
Q_{T, 5} & =\frac{1}{120}\left(16 Q_{T, 1}+45 u_{2}-35 u_{3}+10 u_{4}-u_{5}\right), \tag{9}\\
Q_{T, 6} & =\frac{1}{720}\left(61 Q_{T, 1}+211 u_{2}-210 u_{3}+85 u_{4}-15 u_{5}+u_{6}\right), \tag{10}\\
u_{n} & =\mu_{t}^{n} D^{n} Q_{T, 0} . \tag{11}
\end{align*}
$$

3. Taylor expansion of the Henyey-Greenstein phase function

The Henyey-Greenstein model is a (phase) function of the scattering angle that we reparameterize by the θ angle of the singlescattering configuration we use (see paper Fig. 1):

$$
\begin{equation*}
\rho(\theta)=\rho_{\mathrm{HG}}\left(\theta+\frac{\pi}{2}\right)=\frac{1}{4 \pi} \frac{1-g^{2}}{\left(1+g^{2}+2 g \sin \theta\right)^{3 / 2}} . \tag{12}
\end{equation*}
$$

Applying the order-6 Taylor expansion from Eq. (1) with $f \equiv \rho$ yields the following polynomial coefficients:

$$
\begin{align*}
Q_{\rho, 0} & =v_{0} \tag{13}\\
Q_{\rho, 1} & =-3 v_{1} \tag{14}\\
Q_{\rho, 2} & =15 v_{2} \tag{15}\\
Q_{\rho, 3} & =\frac{1}{2}\left(v_{1}-35 v_{3}\right) \tag{16}\\
Q_{\rho, 4} & =\frac{1}{8}\left(315 v_{4}-20 v_{2}\right), \tag{17}\\
Q_{\rho, 5} & =\frac{1}{40}\left(350 v_{3}-3465 v_{5}-v_{1}\right), \tag{18}\\
Q_{\rho, 6} & =\frac{1}{48}\left(9009 v_{6}-1260 v_{4}+16 v_{2}\right), \tag{19}\\
v_{n} & =\frac{\left(1-g^{2}\right) g^{n}}{4 \pi\left(1+g^{2}\right)^{2 n+3}} . \tag{20}
\end{align*}
$$

4. Analytical Taylor expansion and cosine product

An expansion $\mathcal{T}_{f}(\theta)$, with $f \in\{T, \rho\}$, can be multiplied with the emitter cosine foreshortening $N(\theta)$, to sample from the product. The corresponding PDF and CDF have forms similar to Eq. (2):

$$
\begin{equation*}
p_{N * f}(\theta)=\frac{N(\theta) \mathcal{T}_{f}(\theta)}{C_{N * f}\left(\theta_{\min }, \theta_{\max }\right)}, \quad P_{N * f}(\theta)=\frac{C_{N * f}\left(\theta_{\min }, \theta\right)}{C_{N * f}\left(\theta_{\min }, \theta_{\max }\right)} . \tag{21}
\end{equation*}
$$

The CDF $P_{N * f}$ again is not analytically invertible, so we sample from it via numerical root finding. The normalization factor $C_{N * f}(a, b)=\int_{a}^{b} N(\theta) \mathcal{T}_{f}(\theta) \mathrm{d} \theta$ has a closed-form expression, obtained through integration by parts or a computer algebra system:

$$
\begin{align*}
C_{N * f}(a, b)= & Q_{f}^{a, b}(b) \cos b-Q_{f}^{a, b}(a) \cos a+ \\
& Q_{f}^{a,-b}(b) \sin b-Q_{f}^{a,-b}(a) \sin a \tag{22}
\end{align*}
$$

where the sine and cosine factors come from $N(\theta) \cdot Q_{f}^{k, l}$ are polynomials that have the following expressions:

$$
\begin{align*}
Q_{f}^{k, l}(\theta)= & \sum_{n=0}^{6} Q_{f, n}^{k, l} \theta^{n}, \tag{23}\\
Q_{f, 0}^{k, l}= & -l Q_{f, 0}+1 k Q_{f, 1}-6 k\left(Q_{f, 3}-20 Q_{f, 5}\right) \\
& -2 l\left(Q_{f, 2}-12 Q_{f, 4}+360 Q_{f, 6}\right), \tag{24}\\
Q_{f, 1}^{k, l}= & -l Q_{f, 1}+2 k Q_{f, 2}-6 l\left(Q_{f, 3}-20 Q_{f, 5}\right) \\
& -24 k\left(Q_{f, 4}-30 Q_{f, 6}\right), \tag{25}\\
Q_{f, 2}^{k, l}= & -l Q_{f, 2}+3 k Q_{f, 3}-60 k Q_{f, 5} \\
& -12 l\left(Q_{f, 4}-30 Q_{f, 6}\right), \tag{26}\\
Q_{3}^{k, l}= & -l Q_{f, 3}+4 k Q_{f, 4}-20 l Q_{f, 5}-120 k Q_{f, 6}, \tag{27}\\
Q_{f, 4}^{k, l}= & -l Q_{f, 4}+5 k Q_{f, 5}-30 l Q_{f, 6}, \tag{28}\\
Q_{f, 5}^{k, l}= & -l Q_{f, 5}+6 k Q_{f, 6}, \tag{29}\\
Q_{f, 6}^{k, l}= & -l Q_{f, 6} . \tag{30}
\end{align*}
$$

